The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 1 1 1 X 1 X X 1 1 X X X X X X X 1 1 1 X^2 X^2 1 1 X^2 1 1 X^2 X^2 X^2 X^2 0 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 0 0 0 X^3 0 X^3 X^3 X^3+X^2 X^2 X^2 0 X^2 0 X^2 X^2 0 X^3+X^2 X^3 X^3 X^3+X^2 X^3+X^2 X^3 X^3 X^3+X^2 X^2 X^3+X^2 X^2 0 0 X^3 X^3 0 0 X^3 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 X^3 0 0 X^3 X^3 0 0 0 0 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 0 X^3 0 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 X^3 0 X^3 X^3 0 0 generates a code of length 51 over Z2[X]/(X^4) who´s minimum homogenous weight is 49. Homogenous weight enumerator: w(x)=1x^0+50x^49+105x^50+12x^51+10x^52+24x^53+38x^54+4x^55+5x^56+6x^57+1x^58 The gray image is a linear code over GF(2) with n=408, k=8 and d=196. This code was found by Heurico 1.16 in 0.172 seconds.